A biologically plausible model of human radial frequency perception

نویسندگان

  • Frédéric J.A.M. Poirier
  • Hugh R. Wilson
چکیده

Several recent studies have used radial frequency patterns to investigate intermediate-level shape perception, a critical precursor to object recognition. Here, we developed the first neural model of RF perception based on known V4 properties that exhibits many of the characteristics of human RF perception. The model is composed of two main parts: (1) recovery of object position using large-scale non-Fourier V4-like concentric units that respond at the center of concentric contour segments across orientations, and (2) curvature detectors that encode local shape information. Each curvature mechanism combines multiplicatively the responses of three oriented filters, the positions and orientation preferences of which determine the curvature mechanism's tuning properties for position, orientation, and degree of curvature. When responding to RF patterns, peak responses occur at points of maximum curvature. Shape is represented as curvature responses as a function of orientation around the object center, and the cross-correlation of that function with a sine wave peaks when the frequency of the sine wave matches the number of peaks in the stimulus. Cross-correlation strength can be used to model human performance. Model and human performance are comparable for detection, identification, and lateral masking tasks. Moreover, the model also shows size invariance of detection performance due to scaling of the curvature mechanisms. The model is then used to make novel predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate resistivity and susceptibility mapping from airborne electromagnetic and magnetic data, a case study for a geologically plausible porphyry copper unit in Iran

This paper describes the application of approximate methods to invert airborne magnetic data as well as helicopter-borne frequency domain electromagnetic data in order to retrieve a joint model of magnetic susceptibility and electrical resistivity. The study area located in Semnan province of Iran consists of an arc-shaped porphyry andesite covered by sedimentary units which may have potential ...

متن کامل

Recognizing emotions expressed by body pose: A biologically inspired neural model

Research into the visual perception of human emotion has traditionally focused on the facial expression of emotions. Recently researchers have turned to the more challenging field of emotional body language, i.e. emotion expression through body pose and motion. In this work, we approach recognition of basic emotional categories from a computational perspective. In keeping with recent computatio...

متن کامل

Low-Level Contrast Statistics of Natural Images Can Modulate the Frequency of Event-Related Potentials (ERP) in Humans

Humans are fast and accurate in categorizing complex natural images. It is, however, unclear what features of visual information are exploited by brain to perceive the images with such speed and accuracy. It has been shown that low-level contrast statistics of natural scenes can explain the variance of amplitude of event-related potentials (ERP) in response to rapidly presented images. In this ...

متن کامل

Radial Breathing Mode Frequency of Multi-Walled Carbon Nanotube Via Multiple-Elastic Thin Shell Theory

In this paper, the radial breathing mode (RBM) frequencies of multi-walled carbon nanotubes (MWCNTs) are  obtained based on the multiple-elastic thin shell model. For this purpose, MWCNT is considered as a multiple concentric elastic thin cylindrical shells, which are coupled through van der Waals (vdW) forces between two adjacent tubes. Lennard-Jones potential is used to calculate the vdW ...

متن کامل

A biologically plausible model of human shape symmetry perception.

Symmetry is usually computationally expensive to encode reliably, and yet it is relatively effortless to perceive. Here, we extend F. J. A. M. Poirier and H. R. Wilson's (2006) model for shape perception to account for H. R. Wilson and F. Wilkinson's (2002) data on shape symmetry. Because the model already accounts for shape perception, only minimal neural circuitry is required to enable it to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2006